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Abstract

We prove in the general framework of noncommutative geometry that the inner fluctuations of the spectral action can be
computed as residues and give exactly the counterterms for the Feynman graphs with fermionic internal lines. We show that for
geometries of dimension less than or equal to four the obtained terms add up to a sum of a Yang–Mills action with a Chern–Simons
action.
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1. Introduction

The spectral action is defined as a functional on noncommutative geometries. Such a geometry is specified by a
fairly simple data of operator theoretic nature, namely a spectral triple

(A,H, D), (1.1)

where A is a noncommutative algebra with involution ∗, acting in the Hilbert space H while D is a self-adjoint
operator with compact resolvent and such that

[D, a] is bounded ∀a ∈ A. (1.2)

Additional structures such as the Z/2Z grading γ in the even case and the real structure J of H will play little role
below, but can easily be taken into account.
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The spectral action fulfills two basic properties

• It only depends upon the spectrum of D.
• It is additive for direct sums of noncommutative geometries.

It is given in general by the expression

Trace( f (D/Λ)), (1.3)

where f is a positive even function of the real variable and the parameter Λ fixes the mass scale. The dimension
of a noncommutative geometry is not a number but a spectrum, the dimension spectrum (cf. [6]) which is the
subset Π of the complex plane C at which the spectral functions have singularities. Under the hypothesis that the
dimension spectrum is simple i.e. that the spectral functions have at most simple poles, the residue at the pole
defines a far reaching extension (cf. [6]) of the fundamental integral in noncommutative geometry given by the
Dixmier trace (cf. [3]). This extends to the framework of spectral triples the Wodzicki residue (originally defined
for pseudodifferential operators on standard manifolds) as a trace on the algebra of operators generated by A and
powers of D so that

P →

∫
−P ∈ C,

∫
−P1 P2 =

∫
−P2 P1. (1.4)

Both this algebra and the functional (1.4) do not depend on the detailed knowledge of the metric defined by D and
the residue is unaltered by a change D → D′ of D such that the difference

Log D′
− Log D,

is a bounded operator with suitable regularity. In other words the residue only depends on the quasi-isometry class of
the noncommutative metric.

In this generality the spectral action (1.3) can be expanded in decreasing powers of the scale Λ in the form

Trace( f (D/Λ)) ∼

∑
k∈Π+

fkΛk
∫
−|D|

−k
+ f (0)ζD(0)+ o(1), (1.5)

where Π + is the positive part of the dimension spectrum Π . The function f only appears through the scalars

fk =

∫
∞

0
f (v)vk−1dv. (1.6)

One lets

ζD(s) = Tr(|D|
−s), (1.7)

and regularity at s = 0 is assumed.

Both the gauge bosons and the Feynman graphs with fermionic internal lines can be readily defined in the above
generality of a noncommutative geometry (A,H, D) (cf. [2]). Indeed, as briefly recalled at the beginning of Section 2,
the inner fluctuations of the metric coming from the Morita equivalence A ∼ A generate perturbations of D of the
form D → D′

= D + A where the A plays the role of the gauge potentials and is a self-adjoint element of the
bimodule

Ω1
D =

{∑
a j [D, b j ]; a j , b j ∈ A

}
. (1.8)

The line element ds = D−1 plays the role of the fermion propagator so that the value U (Γn) of one loop graphs Γn
with fermionic internal lines and n external bosonic lines (such as the triangle graph of Fig. 1) is easy to obtain and
given at the formal level by,

U (Γn) = Tr((AD−1)n).
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Fig. 1. The triangle graph.

Fig. 2. The self-energy graph.

Fig. 3. The quartic graph.

These graphs diverge in dimension 4 for n ≤ 4 and the residue at the pole in dimensional regularization can be
computed and expressed as∫

−(AD−1)n,

as will be shown in [5].

In this paper we analyze how the spectral action behaves under the inner fluctuations. The main results are

• In dimension 4 the variation of the spectral action under inner fluctuations gives the local counterterms for the
fermionic graphs of Figs. 4, 2, 1 and 3 respectively

ζD+A(0)− ζD(0) = −

∫
−AD−1

+
1
2

∫
−(AD−1)2 −

1
3

∫
−(AD−1)3 +

1
4

∫
−(AD−1)4,

• Assuming that the tadpole graph of Fig. 4 vanishes the above variation is the sum of a Yang–Mills action and a
Chern–Simons action relative to a cyclic 3-cocycle on A.
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Fig. 4. The tadpole graph.

As a corollary, combining both results we obtain that the variation under inner fluctuations of the scale independent
terms of the spectral action is given (cf. Theorem 3.5 for precise notations) in dimension 4 by

ζD+A(0)− ζD(0) =
1
4

∫
τ0

(dA + A2)2 −
1
2

∫
ψ

(
AdA +

2
3

A3
)
. (1.9)

The conceptual meaning of the above tadpole condition is that the original noncommutative geometry (A,H, D)
is a critical point for the (Λ-independent part of the) spectral action, which is a natural hypothesis. The functional τ0
is a Hochschild 4-cocycle but in general not a cyclic cocycle. In particular, as explained in detail in [3] Chapter VI,
the expression∫

τ0

(dA + A2)2, (1.10)

coincides with the Yang–Mills action functional provided that τ0 ≥ 0 i.e. that τ0 is a positive Hochschild cocycle. The
Hochschild cocycle τ0 cannot be cyclic unless the expression (1.10) vanishes.

We show at the end of the paper that the cyclic cohomology class of the cyclic three cocycle ψ is determined
modulo the image of the boundary operator B and that the pairing of ψ with the K1-group is trivial. This shows that
under rather general assumptions one can eliminate ψ by a suitable redefinition of τ0 (see Proposition 3.7).

The meaning of the vanishing of ψ together with positivity of τ0 is that the original noncommutative geometry
(A,H, D) is at a stable critical point as far as the inner fluctuations are concerned. In fact it gives in that case an
absolute minimum for the (scale independent terms of the) spectral action in the corresponding class modulo inner
fluctuations. We end the paper with the corresponding open questions : elimination ofψ and positivity of the 4-cocycle
τ0.

2. Inner fluctuations of the metric and the spectral action

The inner fluctuations of the noncommutative metric appear through the simple issue of Morita equivalence. Indeed
let B be the algebra of endomorphisms of a finite projective (right) module E over A

B = EndA(E). (2.1)

Given a spectral triple (A,H, D) one easily gets a representation of B in the Hilbert space

H′
= E ⊗AH.

But to define the analogue D′ of the operator D for B requires the choice of a Hermitian connection on E . Such a
connection ∇ is a linear map ∇ : E → E ⊗A Ω1

D satisfying the following rules [3]

∇(ξa) = (∇ξ)a + ξ ⊗ da, ∀ξ ∈ E, a ∈ A, (2.2)

(ξ,∇η)− (∇ξ, η) = d(ξ, η), ∀ξ, η ∈ E, (2.3)

where da = [D, a] and where Ω1
D ⊂ L(H) is the A-bimodule (1.8). The operator D′ is then given by

D′(ξ ⊗ η) = ξ ⊗ Dη + ∇(ξ)η. (2.4)

Any algebra A is Morita equivalent to itself and when one applies the above construction with E = A one gets the
inner deformations of the spectral geometry. These replace the operator D by

D → D + A, (2.5)
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where A = A∗ is an arbitrary selfadjoint element of Ω1
D where we disregard the real structure for simplicity. To

incorporate the real structure one replaces the algebra A by its tensor product A⊗Ao with the opposite algebra.

2.1. Pseudodifferential calculus

As developed in [6] one has under suitable regularity hypothesis on the spectral geometry (A,H, D) an analogue
of the pseudodifferential calculus. We briefly recall the main ingredients here. We say that an operator T in H is
smooth iff

t → Ft (T ) = eit |D|T e−it |D|
∈ C∞(R,L(H)), (2.6)

and let OP0 be the algebra of smooth operators. Any smooth operator T belongs to the domains of δn , where the
derivation δ is defined by

δ(T ) = |D|T − T |D| = [|D|, T ]. (2.7)

The analogue of the Sobolev spaces are given by

Hs = Dom|D|
s s ≥ 0, H−s = (Hs)

∗, s < 0.

For any smooth operator T one has (cf. [6]) THs ⊂ Hs and we let

OPα = {T ; |D|
−αT ∈ OP0

}.

We work in dimension ≤ 4 which means that ds = D−1 is an infinitesimal of order 1
4 and thus that for N > 4,

OP−N is inside trace class operators. In general we work modulo operators of large negative order, i.e. mod OP−N

for large N . We let D(A) be the algebra generated by A and D considered first at the formal level. The main point is
the following lemma [6] which allows us to multiply together pseudodifferential operators of the form

P D−2n, P ∈ D(A). (2.8)

One lets ∇(T ) = D2T − T D2.

Lemma 2.1 ([6]). Let T ∈ OP0.

(a) ∇
n(T ) ∈ OPn

∀n ∈ N.
(b) D−2T =

∑n
0(−1)k∇k(T )D−2k−2

+ (−1)n+1 D−2
∇

n+1(T )D−2n−2.
(c) The remainder Rn = D−2

∇
n+1(T )D−2n−2 belongs to OP−(n+3).

Proof. (a) The equality

|D|T |D|
−1

= T + β(T ), β(T ) = δ(T )|D|
−1, (2.9)

shows that for T ∈ OP0 one has

D2T D−2
= T + 2β(T )+ β2(T ) ∈ OP0. (2.10)

Similarly one has,

D−2T D2
∈ OP0. (2.11)

This shows that in the definition of OPα one can put |D|
−α on either side.

To prove (a) we just need to check that ∇(T ) ∈ OP1 and then proceed by induction. We have ∇(T ) =

D2T − T D2
= (D2T D−2

− T )D2
= (2β(T )+ β2(T ))D2

= 2δ(T )|D| + δ2(T ),

∇(T ) = 2δ(T )|D| + δ2(T ), (2.12)

which belongs to OP1.

(b) For n = 0 the statement follows from

D−2T = T D−2
− D−2

∇(T )D−2. (2.13)
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Next assume we proved the result for (n − 1). To get it for n we must show that

(−1)n∇
n(T )D−2n−2

+ (−1)n+1 D−2
∇

n+1(T )D−2n−2
= (−1)n D−2

∇
n(T )D−2n . (2.14)

Multiplying by D2n on the right, with T ′
= (−1)n∇

n(T ), we need to show that

T ′ D−2
− D−2

∇(T ′)D−2
= D−2T ′,

which is (2.13).
(c) Follows from (a). �

Thus when working mod OP−N for large N one can write

D−2T ∼

∞∑
0

(−1)k∇k(T )D−2k−2, (2.15)

and this allows us to compute the product in the algebra ΨD of operators which, modulo OP−N for any N , are of the
form (2.8). Such operators will be called pseudodifferential.

2.2. The operator Log (D + A)2 − Log (D2)

We let A be a gauge potential,

A =

∑
ai [D, bi ]; ai , bi ∈ A, A = A∗, (2.16)

and we consider the operator X defined from the square of the self-adjoint operator D + A,

(D + A)2 = D2
+ X, X = AD + D A + A2. (2.17)

The following lemma is an adaptation to our set-up of a classical result in the pseudodifferential calculus on manifolds,

Lemma 2.2.

Y = Log (D + A)2 − Log (D2) ∈ ΨD ∩ OP−1.

Proof. We start with the equality (a > 0)

Log a =

∫
∞

0

(
1

λ+ 1
−

1
λ+ a

)
dλ, (2.18)

and apply it to both D2 and (D + A)2 = D2
+ X to get,

Y =

∫
∞

0

(
1

λ+ D2 −
1

λ+ D2 + X

)
dλ. (2.19)

One has

(λ+ D2
+ X)−1

= ((1 + X (D2
+ λ)−1)(D2

+ λ))−1
= (D2

+ λ)−1(1 + X (D2
+ λ)−1)−1,

and one can expand,

(1 + X (D2
+ λ)−1)−1

=

∞∑
0

(−1)n(X (D2
+ λ)−1)n . (2.20)

In this expansion the remainder is, up to sign,

(X (D2
+ λ)−1)n+1(1 + X (D2

+ λ)−1)−1
= Rn(λ). (2.21)

Here X ∈ OP1 by construction so that a rough estimate of the order of the remainder is given by∫
Xn+1(D2

+ λ)−(n+1)dλ ∼ Xn+1(D2)−n
∼ |D|

n+1−2n . (2.22)
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Now in Lemma 2.1(b) we can use D2
+ λ instead of D2. This does not alter ∇ since

[D2
+ λ, T ] = [D2, T ], (2.23)

and we thus get,

(D2
+ λ)−1T =

n∑
0

(−1)k∇k(T )(D2
+ λ)−(k+1)

+ (−1)n+1(D2
+ λ)−1

∇
n+1(T )(D2

+ λ)−(n+1). (2.24)

Thus using (2.20) the integrand in (2.19) is up to a remainder,

(D2
+ λ)−1 X (D2

+ λ)−1
− (D2

+ λ)−1 X (D2
+ λ)−1 X (D2

+ λ)−1

+ · · · + (−1)k+1((D2
+ λ)−1 X)k(D2

+ λ)−1
+ · · · . (2.25)

Using (2.24) one can move all the (D2
+ λ)−1 to the right at the expense of replacing X ’s by ∇

k j (X) and increasing
the n in (D2

+ λ)−n . Thus using, (n ≥ 2)∫
∞

0
(D2

+ λ)−ndλ =
1

n − 1
D2(1−n), (2.26)

we get that Y is in ΨD ∩ OP−1 provided we control the remainders. To control the remainder in (2.21) one can use∫
∞

0
‖(X (D2

+ λ)−1)3‖dλ < ∞, (2.27)

while the other terms are uniformly in OP−N since D2(D2
+ λ)−1 is bounded by 1 in any Hs .

To get (2.27) since X ∈ OP1 one can replace X by |D| and only integrate from λ = 1 to ∞. Then the inequality
D2

+ λ ≥ 2|D|λ1/2 gives the required result. �

Lemma 2.3. (1) For any N there is an element B(t) ∈ ΨD such that modulo OP−N ,

∂

∂t
(Log (D2

+ t X)− Log D2
− Log (1 + t X D−2)) = [D2

+ t X, B(t)]. (2.28)

(2) Modulo OP−N one has

Log (D2
+ X)− Log D2

− Log (1 + X D−2) = [D2, B1] + [X, B2]

where B1 =
∫ 1

0 B(t)dt, B2 =
∫ 1

0 t B(t)dt are in ΨD.

Proof. (1) From (2.19) one has

∂

∂t
Log (D2

+ t X) =

∫
∞

0

1

λ+ D2 + t X
X

1

λ+ D2 + t X
dλ, (2.29)

while ∫
∞

0
X

1

(λ+ D2 + t X)2
dλ = X (D2

+ t X)−1, (2.30)

which is the derivative in t of Log (1 + t X D−2) since X (D2
+ t X)−1

= X D−2(1 + t X D−2)−1.
We thus get, calling Z(t) the left hand side of (2.28),

Z(t) =

∫
∞

0

[
1

λ+ D2 + t X
, X

1

λ+ D2 + t X

]
dλ. (2.31)

Let us define,

∇t (T ) = [D2
+ t X, T ], (2.32)
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and apply the formula of Lemma 2.1(b) with λ+ D2
+ t X instead of D2 and T = X (λ+ D2

+ t X)−1. We thus get,[
1

λ+ D2 + t X
, T

]
=

n∑
1

(−1)k∇k
t (T (λ+ D2

+ t X)−(k+1))+ Rn, (2.33)

where we put (λ+ D2
+ t X)−(k+1) inside the argument of ∇

k
t since it is in the centralizer of ∇t . Thus,[

1

λ+ D2 + t X
, T

]
= ∇t

(
n∑
1

(−1)k∇k−1
t (X)(λ+ D2

+ t X)−(k+2)

)
+ Rn . (2.34)

When integrated in λ the parenthesis gives,

B(t) =

n∑
1

(−1)k∇k−1
t (X)

1
k + 1

1

(D2 + t X)k+1 . (2.35)

Let us then check that (D2
+ t X)−1

∈ ΨD. We just expand it as,

(D2
+ t X)−1

= D−2
− D−2t X D−2

+ D−2t X D−2t X D−2
− · · · . (2.36)

It follows that B(t) ∈ ΨD while,

Z(t) = ∇t (B(t))+ R′
n . (2.37)

(2) Follows by integration using (2.35) and (2.36) to express B j as explicit elements of ΨD mod OP−N . �

2.3. The variation ζD+A(0)− ζD(0)

We are now ready to prove the main result of this section, we work as above with a regular spectral triple with
simple dimension spectrum.

Theorem 2.4. Let A be a gauge potential,

(1) The function ζD+A(s) extends to a meromorphic function with at most simple poles.
(2) It is regular at s = 0.
(3) One has

ζD+A(0)− ζD(0) = −

∫
−Log (1 + AD−1) =

∑ (−1)n

n

∫
−(AD−1)n .

Proof. (1) We start from the expansional formula

eA+Be−A
=

∞∑
0

∫
0≤t1≤···≤tn≤1

B(t1)B(t2) . . . B(tn)
∏

dti (2.38)

where

B(t) = et A Be−t A. (2.39)

We take A = −
s
2 Log D2 and B = −

s
2 Y so that,

eA+B
= (D2

+ X)−s/2, eA
= (D2)−s/2. (2.40)

We define the one parameter group,

σu(T ) = (D2)u/2T (D2)−u/2, (2.41)

so that with the above notations we get,

B(t) = −
s

2
σ−st (Y ). (2.42)
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We can thus write,

(D2
+ X)−s/2

= (D2)−s/2
+

∞∑
n=1

(
−

s

2

)n

×

(∫
0≤t1≤···≤tn≤1

σ−st1(Y ) . . . σ−sti (Y ) . . . σ−stn (Y )
∏

dti

)
(D2)−s/2. (2.43)

Since by Lemma 2.2 one has Y ∈ ΨD ∩ OP−1 for any given half plane H = {z; R(z) ≥ a} only finitely many terms
of the sum (2.43) contribute to the singularities in H of the function ζD+A(s) = Tr((D2

+ X)−s/2) and the expansion
of the one parameter group σu (cf. [6])

σ2z(T ) = T + zε(T )+
z(z − 1)

2!
ε2(T )+ · · · +

z(z − 1) · · · (z − n + 1)
n!

εn(T ) mod OPq−(n+1) (2.44)

where T ∈ OPq and,

ε(T ) = [D2, T ]D−2
= [D2, T D−2

] (2.45)

gives the required meromorphic continuation.
(2) By hypothesis the functions of the form Tr(P|D|

−s) for P ∈ ΨD have at most simple poles thus only the first
term of the infinite sum in (2.43) can contribute to the value ζD+A(0)− ζD(0). This first term is

−
s

2

∫ 1

0
σ−st (Y )dt (D2)−s/2,

and using (2.44) one can replace σ−st (Y ) by Y without altering the value of ζD+A(0) − ζD(0) which is hence, using
the definition of the residue∫

−P = Ress=0Tr(P|D|
−s), (2.46)

given by

ζD+A(0)− ζD(0) = −
1
2

∫
−Y = −

1
2

∫
−Log (1 + X D−2), (2.47)

using Lemma 2.3 (2) and the trace property (1.4).
(3) For any elements a, b ∈ ΨD ∩ OP−1 one has the identity∫

−Log ((1 + a)(1 + b)) =

∫
−Log (1 + a)+

∫
−Log (1 + b). (2.48)

This can be checked directly using the expansion

Log (1 + a) =

∞∑
1

(−1)n+1 an

n
,

and the trace property (1.4) of the residue. In fact one can reduce it to the identity∫
−(t + b)−1(t + a)−1(2t + a + b) =

∫
−((t + a)−1

+ (t + b)−1),

which follows from (1.4) and the equality

(t + a)−1(2t + a + b)(t + b)−1
= (t + a)−1

+ (t + b)−1.

Applying (2.48) to a = D−1 A and b = AD−1 one gets, with X = D A + AD + A2 as above,∫
−Log (1 + X D−2) = 2

∫
−Log (1 + AD−1), (2.49)

which combined with (2.47) gives the required equality. �
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3. Yang–Mills + Chern–Simons

We work in dimension ≤4 and make the following hypothesis of vanishing tadpole (cf. Fig. 4)∫
−a[D, b]D−1

= 0, ∀a, b ∈ A. (3.1)

By Theorem 2.4 this condition is equivalent to the vanishing of the first order variation of the (scale independent part
of) the spectral action under inner fluctuations, and is thus a natural hypothesis.

Given a Hochschild cochain ϕ of dimension n on an algebra A, normalized so that

ϕ(a0, a1, . . . , an) = 0,

if any of the a j for j > 0 is a scalar, it defines (cf. [3]) a functional on the universal n-forms Ωn(A) by the equality∫
ϕ

a0da1 · · · dan = ϕ(a0, a1, . . . , an). (3.2)

When ϕ is a Hochschild cocycle one has∫
ϕ

aω =

∫
ϕ

ωa, ∀a ∈ A. (3.3)

The boundary operator B0 defined on normalized cochains by

(B0ϕ)(a0, a1, . . . , an−1) = ϕ(1, a0, a1, . . . , an−1), (3.4)

is defined in such a way that∫
ϕ

dω =

∫
B0ϕ

ω. (3.5)

Working in dimension ≤ 4 means that

D−1
∈ L(4,∞), (3.6)

i.e. that D−1 is an infinitesimal of order 1
4 (cf. [3]). The following functional is then a Hochschild cocycle and is given

as Dixmier trace of infinitesimals of order one,

τ0(a
0, a1, a2, a3, a4) =

∫
−a0

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]D−1

[D, a4
]D−1. (3.7)

The following functional uses the residue in an essential manner,

ϕ(a0, a1, a2, a3) =

∫
−a0

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]D−1. (3.8)

Lemma 3.1. (1) bϕ = −τ0

(2) bB0τ0 = 2τ0

(3) B0ϕ = 0.

Proof. (1) One has,

bϕ(a0, . . . , a4) =

∫
−a0a1

[D, a2
]D−1

[D, a3
]D−1

[D, a4
]D−1

−

∫
−a0(a1

[D, a2
] + [D, a1

]a2)D−1
[D, a3

]D−1
[D, a4

]D−1

+

∫
−a0

[D, a1
]D−1(a2

[D, a3
] + [D, a2

]a3)D−1
[D, a4

]D−1
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−

∫
−a0

[D, a1
]D−1

[D, a2
]D−1(a3

[D, a4
] + [D, a3

]a4)D−1

+

∫
−a4a0

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]D−1.

Thus using

aD−1
− D−1a = D−1

[D, a]D−1, (3.9)

we get (2).
(2) One has

B0τ0(a
0, a1, a2, a3) =

∫
−[D, a0

]D−1
[D, a1

]D−1
[D, a2

]D−1
[D, a3

]D−1

= −ϕ(a0, a1, a2, a3)+ ϕ̃(a0, a1, a2, a3),

where

ϕ̃(a0, a1, a2, a3) =

∫
−a0 D−1

[D, a1
]D−1

[D, a2
]D−1

[D, a3
].

Thus it is enough to check that bϕ̃ = τ0. One has

bϕ̃(a0, . . . , a4) =

∫
−a0a1 D−1

[D, a2
]D−1

[D, a3
]D−1

[D, a4
]

−

∫
−a0 D−1(a1

[D, a2
] + [D, a1

]a2)D−1
[D, a3

]D−1
[D, a4

]

+

∫
−a0 D−1

[D, a1
]D−1(a2

[D, a3
] + [D, a2

]a3)D−1
[D, a4

]

−

∫
−a0 D−1

[D, a1
]D−1

[D, a2
]D−1(a3

[D, a4
] + [D, a3

]a4)

+

∫
−a4a0 D−1

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]

=

∫
−a0 D−1

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]D−1

[D, a4
]

and using (3.9) one gets the required equality since, using (3.6),∫
−a0

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]D−1

[D, a4
]D−1

=

∫
−a0 D−1

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]D−1

[D, a4
].

(3) We use the notation

α(a) = DaD−1, ∀a ∈ A. (3.10)

Note that in general α(a) 6∈ A. One has

α(ab) = α(a)α(b), ∀a, b ∈ A.

Let us show that the tadpole hypothesis (3.1) implies that for any three elements a, b, c ∈ A,∫
−αε1(a)αε2(b)αε3(c) =

∫
−abc, (3.11)

for all ε j ∈ {0, 1}. The trace property of the residue shows that this holds when all ε j = 1. One is thus reduced to
show that∫

−α(x)y =

∫
−xy, ∀x, y ∈ A,
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which follows from (3.1). One has by construction

B0ϕ(a0, a1, a2) =

∫
−(α(a0)− a0)(α(a1)− a1)(α(a2)− a2),

which vanishes since the terms cancel pairwise. �

Lemma 3.2. One has for any A ∈ Ω1 the equality∫
−AD−1 AD−1

= −

∫
ϕ

AdA.

Proof. Let us first show that for any a j ∈ A one has∫
−a0[D, a1]D−1a2[D, a3]D−1

= −ϕ(a0, a1, a2, a3). (3.12)

It suffices using (3.9) to show that∫
−a0[D, a1]a2 D−1

[D, a3]D−1
= 0,

which follows using

a0[D, a1]a2 = a0[D, a1a2] − a0a1[D, a2],

and the vanishing of∫
−a[D, b]D−1

[D, c]D−1
=

∫
−a(α(b)− b)(α(c)− c) = 0, ∀a, b, c ∈ A

using (3.7). Let then A1 = a0da1, A2 = a2da3, one has∫
−A1 D−1 A2 D−1

= −

∫
ϕ

A1dA2,

since dA2 = da2da3, and the same holds for any A j ∈ Ω1 so that Lemma 3.2 follows. �

Lemma 3.3. One has for any A ∈ Ω1 the equality∫
−(AD−1)4 =

∫
τ0

A4.

Proof. It is enough to check that with a j , b j in A one has∫
τ0

a1db1a2db2a3db3a4db4 =

∫
−A1 D−1 A2 D−1 A3 D−1 A4 D−1, A j = a j [D, b j ].

Since there are 4 terms D−1 one is in the domain of the Dixmier trace and one can freely permute the factors D−1

with the elements of A in computing the residue of the right hand side. One can thus assume that a2 = a3 = a4 = 1.
The result then follows from (3.7). �

Lemma 3.4. One has for any A j ∈ Ω1 the equality∫
−A1 D−1 A2 D−1 A3 D−1

=

∫
ϕ+

1
2 B0τ0

A1 A2 A3 −
1
2

(∫
τ0

(dA1)A2 A3 +

∫
τ0

A1dA2 A3 +

∫
τ0

A1 A2dA3

)
. (3.13)
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Proof. We can take A j = a j db j and the first task is to reorder

a1db1a2db2a3db3 = a1db1a2(d(b2a3)− b2da3)db3

= a1(d(b1a2)− b1da2)d(b2a3)db3 − a1(d(b1a2b2)− b1d(a2b2))da3db3

= a1d(b1a2)d(b2a3)db3 − a1b1da2d(b2a3)db3

− a1d(b1a2b2)da3db3 + a1b1d(a2b2)da3db3. (3.14)

We thus get∫
ϕ

A1 A2 A3 =

∫
−a1[D, b1a2]D−1

[D, b2a3]D−1
[D, b3]D−1

−

∫
−a1b1[D, a2]D−1

[D, b2a3]D−1
[D, b3]D−1

−

∫
−a1[D, b1a2b2]D−1

[D, a3]D−1
[D, b3]D−1

+

∫
−a1b1[D, a2b2]D−1

[D, a3]D−1
[D, b3]D−1

=

∫
−a1[D, b1]a2 D−1

[D, b2a3]D−1
[D, b3]D−1

−

∫
−a1[D, b1]a2b2 D−1

[D, a3]D−1
[D, b3]D−1.

Using [D−1, b2] = −D−1
[D, b2]D−1 we thus get,∫

ϕ

A1 A2 A3 =

∫
−a1[D, b1]a2 D−1

[D, b2]a3 D−1
[D, b3]D−1

−

∫
−a1[D, b1]a2 D−1

[D, b2]D−1
[D, a3]D−1

[D, b3]D−1. (3.15)

Next one has using (3.14)∫
B0τ0

A1 A2 A3 =

∫
−[D, a1]D−1

[D, b1a2]D−1
[D, b2a3]D−1

[D, b3]D−1

−

∫
−[D, a1b1]D−1

[D, a2]D−1
[D, b2a3]D−1

[D, b3]D−1

−

∫
−[D, a1]D−1

[D, b1a2b2]D−1
[D, a3]D−1

[D, b3]D−1

+

∫
−[D, a1b1]D−1

[D, a2b2]D−1
[D, a3]D−1

[D, b3]D−1.

Since one is in the domain of the Dixmier trace, one can permute D−1 with a for a ∈ A. Thus the first two terms
combine to give,∫

−[D, a1]D−1
[D, b1]a2 D−1

[D, b2a3]D−1
[D, b3]D−1

−

∫
−a1[D, b1]D−1

[D, a2]D−1
[D, b2a3]D−1

[D, b3]D−1,

and the last two terms combine to give,∫
−a1[D, b1]D−1

[D, a2b2]D−1
[D, a3]D−1

[D, b3]D−1

−

∫
−[D, a1]D−1

[D, b1]a2b2 D−1
[D, a3]D−1

[D, b3]D−1.



14 A. Connes, A.H. Chamseddine / Journal of Geometry and Physics 57 (2006) 1–21

Thus these 4 terms add up to give∫
B0τ0

A1 A2 A3 =

∫
−[D, a1]D−1

[D, b1]a2 D−1
[D, b2]a3 D−1

[D, b3]D−1

−

∫
−a1[D, b1]D−1

[D, a2]D−1
[D, b2]a3 D−1

[D, b3]D−1

+

∫
−a1[D, b1]D−1a2[D, b2]D−1

[D, a3]D−1
[D, b3]D−1. (3.16)

Combining this with (3.15) thus gives,∫
ϕ+

1
2 B0τ0

A1 A2 A3 =

∫
−a1[D, b1]a2 D−1

[D, b2]a3 D−1
[D, b3]D−1

+
1
2

∫
−[D, a1]D−1

[D, b1]D−1a2[D, b2]D−1a3[D, b3]D−1

−
1
2

∫
−a1[D, b1]D−1

[D, a2]D−1
[D, b2]D−1a3[D, b3]D−1

−
1
2

∫
−a1[D, b1]D−1a2[D, b2]D−1

[D, a3]D−1
[D, b3]D−1. (3.17)

But one has, using [a, D−1
] = D−1

[D, a]D−1,∫
−a1[D, b1]a2 D−1

[D, b2]a3 D−1
[D, b3]D−1

=

∫
−a1[D, b1]D−1

[D, a2]D−1
[D, b2]a3 D−1

[D, b3]D−1

+

∫
−a1[D, b1]D−1a2[D, b2]a3 D−1

[D, b3]D−1

=

∫
−a1[D, b1]D−1

[D, a2]D−1
[D, b2]D−1a3[D, b3]D−1

+

∫
−a1[D, b1]D−1a2[D, b2]D−1

[D, a3]D−1
[D, b3]D−1

+

∫
−A1 D−1 A2 D−1 A3 D−1,

which combined with (3.17) gives the required equality. �

We can now state the main result

Theorem 3.5. Under the tadpole hypothesis (3.1) one has

(1) ψ = ϕ +
1
2 B0τ0 is a cyclic 3-cocycle given (with α(x) = Dx D−1) by

ψ(a0, a1, a2, a3) =
1
2

∫
−(α(a0)a1α(a2)a3 − a0α(a1)a2α(a3)) (3.18)

(2) For any A ∈ Ω1 one has∫
−Log (1 + AD−1) = −

1
4

∫
τ0

(dA + A2)2 +
1
2

∫
ψ

(
AdA +

2
3

A3
)
. (3.19)

Proof. (1) By Lemma 3.1 ψ is a Hochschild cocycle. Moreover by Lemma 3.1 it is in the kernel of B0 and is hence
cyclic. Expanding the expression

ψ(a0, a1, a2, a3) =
1
2

∫
−(α(a0)+ a0)(α(a1)− a1)(α(a2)− a2)(α(a3)− a3),

and using (3.11), one gets (3.18).
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(2) One has∫
−Log (1 + AD−1) = −

1
2

∫
−(AD−1)2 +

1
3

∫
−(AD−1)3 −

1
4

∫
−(AD−1)4.

Both sides of (3.19) are thus polynomials in A and it is enough to compare the monomials of degree 2, 3 and 4. In
degree 2 the right hand side of (3.19) gives

−
1
4

∫
τ0

(dA)2 +
1
2

∫
ψ

AdA =
1
2

∫
ϕ

AdA,

using (3.5). Thus by Lemma 3.2 one gets the same as the term of degree two in the left hand side of (3.19). In degree
4 the right hand side of (3.19) gives

−
1
4

∫
τ0

A4
= −

1
4

∫
−(AD−1)4,

by Lemma 3.3. It remains to handle the cubic terms, the right hand side of (3.19) gives

−
1
4

∫
τ0

(dAA2
+ A2dA)+

1
3

∫
ψ

A3,

which using Lemma 3.4 gives

1
3

∫
−(AD−1)3 +

1
6

∫
τ0

(dAA2
+ AdAA + A2dA)−

1
4

∫
τ0

(dAA2
+ A2dA).

Thus it remains to show that the sum of the last two terms is zero. In fact∫
τ0

dAA2
=

∫
τ0

AdAA =

∫
τ0

A2dA.

This follows from the more general equality∫
τ0

ω1ω2ω3ω4 =

∫
τ0

ω2ω3ω4ω1, ∀ω j ∈ Ω1, (3.20)

which is seen as follows. Let ω j = a j db j , then∫
τ0

ω1ω2ω3ω4 =

∫
−a1[D, b1]D−1a2[D, b2]D−1a3[D, b3]D−1a4[D, b4]D−1,

so that (3.20) follows from the trace property of the residue. �

Combining this result with Theorem 2.4 one gets

Corollary 3.6. The variation under inner fluctuations of the scale independent terms of the spectral action is given in
dimension 4 by

ζD+A(0)− ζD(0) =
1
4

∫
τ0

(dA + A2)2 −
1
2

∫
ψ

(
AdA +

2
3

A3
)
.

Note that there is still some freedom in the choice of the cocycles τ0 and ψ involved in Theorem 3.5. Indeed let
B = AB0 be the fundamental boundary operator in cyclic cohomology [3], one has

Proposition 3.7. (1) Theorem 3.5 still holds after the replacements τ0 → τ0 + ρ and ψ → ψ +
1
2 B0ρ for any

Hochschild 4-cocycle ρ such that B0ρ is already cyclic i.e. such that AB0ρ = 4B0ρ.
(2) If the cocycle ψ is in the image of B i.e. if ψ ∈ B(Z4(A,A∗)) one can eliminate ψ by a redefinition of τ0.

Proof. (1) We first show that
∫
ρ

is a graded trace (cf. [3], Chapter III, Lemma 18). First since ρ is a Hochschild
cocycle one has∫

ρ

aω =

∫
ρ

ωa, ∀a ∈ A.
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To show that
∫
ρ

is a graded trace it is enough to check that∫
ρ

da(a0da1da2da3) = −

∫
ρ

a0da1da2da3da,

i.e. that

B0ρ(aa0, . . . , a3)− ρ(a, a0, . . . , a3) = −ρ(a0, . . . , a3, a),

which follows (cf. [3], Chapter III, Lemma 18) from

B0b + b′ B0 = id − λ,

(where λ is the cyclic permutation) and bρ = 0, bB0ρ = 0. We need to show that the right hand side of (3.19) is
unaltered by the above replacements. For the terms of degree 4 one has to show that∫

ρ

A4
= 0,

which holds because
∫
ρ

is a graded trace. For the terms of degree 3 one has∫
ρ

(dAA2
+ A2dA)−

4
3

∫
1
2 B0ρ

A3
=

∫
ρ

(
dAA2

+ A2dA −
2
3

d(A3)

)
,

and the graded trace property of
∫
ρ

shows that this vanishes. For the quadratic terms one has∫
ρ

(dA)2 − 2
∫

1
2 B0ρ

AdA =

∫
ρ

((dA)2 − d(AdA)) = 0.

(2) By [3] Chapter III, Lemma 19, the condition ψ ∈ B(Z4(A,A∗)) implies that one can find a Hochschild
4-cocycle ρ such that B0ρ is already cyclic and equal to −2ψ thus using (1) one can eliminate ψ . �

The above ambiguity can thus be written in the form

ψ → ψ + δ, ∀δ ∈ B(Z4(A,A∗)) (3.21)

and it does not alter the periodic cyclic cohomology class of the three cocycle ψ .
The Yang–Mills action given by

Y Mτ (A) =

∫
τ

(dA + A2)2,

is automatically gauge invariant under the gauge transformations

A → γu(A) = udu∗
+ u Au∗, ∀u ∈ A, uu∗

= u∗u = 1, (3.22)

as soon as τ is a Hochschild cocycle since F(A) = dA + A2 transforms covariantly i.e. F(γu(A)) = uF(A)u∗. This
action and its precise relation with the usual Yang–Mills functional is discussed at length in [3] Chapter VI.

We now discuss briefly the invariance of the Chern–Simons action. An early instance of this action in terms of
cyclic cohomology can be found in [9]. It is not in general invariant under gauge transformations but one has the
following more subtle invariance,

Proposition 3.8. Let ψ be a cyclic three cocycle on A. The functional

C Sψ (A) =

∫
ψ

AdA +
2
3

A3

fulfills the following invariance rule under the gauge transformation γu(A) = udu∗
+ u Au∗,

C Sψ (γu(A)) = C Sψ (A)+
1
3
〈ψ, u〉

where 〈ψ, u〉 is the pairing between HC3(A) and K1(A).
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Proof. Let A′
= γu(A) = udu∗

+ u Au∗. One has

dA′
= dudu∗

+ du Au∗
+ udAu∗

− u Adu∗,

A′dA′
= udu∗dudu∗

+ udu∗du Au∗
+ udu∗udAu∗

− udu∗u Adu∗

+ u Au∗dudu∗
+ u Au∗du Au∗

+ u AdAu∗
− u A2du∗.

So that using the graded trace property of
∫
ψ

one gets∫
ψ

(A′dA′
− AdA) =

∫
ψ

(udu∗dudu∗
+ du∗du A − du∗udu∗u A + u∗dudu∗u A

+ du∗udA + u∗du A2
− du∗u A2),

which using∫
ψ

du∗udA = −

∫
ψ

du∗du A,

gives ∫
ψ

(A′dA′
− AdA) =

∫
ψ

(udu∗dudu∗
+ 2u∗dudu∗u A + 2u∗du A2).

Next one has∫
ψ

(A
′3

− A3) =

∫
ψ

((udu∗)3 + 3(udu∗)2u Au∗
+ 3udu∗u A2u∗).

Since du∗u = −u∗du, the terms in A2 cancel in the variation of C Sψ . Similarly one has du∗udu∗u = −u∗dudu∗u so
that the terms in A also cancel. One thus obtains

C Sψ (γu(A))− C Sψ (A) =

∫
ψ

(
udu∗dudu∗

+
2
3
(udu∗)3

)
.

One has (udu∗)3 = −udu∗dudu∗ which gives the required result. �

Corollary 3.9. Let ψ be the cyclic three cocycle of Theorem 3.5 then its pairing with the K1-group vanishes
identically,

〈ψ, u〉 = 0, ∀u ∈ K1(A).

Proof. The effect of the gauge transformation (3.22) is to replace the operator D + A by the unitarily equivalent
operator D + γu(A) = u(D + A)u∗, thus the spectral invariants are unaltered by such a transformation. Since the
Yang–Mills term

1
4

∫
τ0

(dA + A2)2,

is invariant under gauge transformations, it follows that so is the Chern–Simons term which implies by Proposition 3.8
that the pairing between the cyclic cocycle ψ and the unitary u is zero. Tensoring the original spectral triple by the
finite geometry (Mn(C),Cn, 0) allows us to apply the same argument to unitaries in Mn(A) and shows that the pairing
with the K1-group vanishes identically. �

As an example where Proposition 3.7 applies we consider the spectral triple (A,H, D) associated to a spin
Riemannian four manifold.

Lemma 3.10. Let (A,H, D) be the spectral triple associated to a compact spin Riemannian four manifold M. Then
one has, with ϕ given by (3.8)

ϕ =
1
6

∫
−([D2, a0

][D, a1
] − [D, a0

][D2, a1
])([D2, a2

][D, a3
] − [D, a2

][D2, a3
])D−6. (3.23)



18 A. Connes, A.H. Chamseddine / Journal of Geometry and Physics 57 (2006) 1–21

Proof. The right hand side of (3.23) only depends on the principal symbols of the operators [D, a j
] and [D2, a j

]

which are given respectively by 1
i ∂µa jγ µ and −2i∂µa j gµλξλ. Thus the principal symbol of [D2, a0

][D, a1
] −

[D, a0
][D2, a1

] is

−2(∂µa0ξµ∂νa1γ ν − ∂νa0γ ν∂µa1ξµ).

The integral over the unit sphere bundle of the product of two symbols of the form γ νξµ is zero unless the indices are
the same and one gets, for the normalized integral,∫

S∗

Tr((γ νξµ)(γ κξλ))dv = gµλgνκ

since the dimension of spinors is equal to 4. Let λ > 0 be the constant such that, for any pseudodifferential operator
P with total symbol σ one has∫

−P = λ

∫
S∗

Tr(σ4(P))dvdx .

We thus get the following formula for the right hand side of (3.23),

2
3
λ

∫
M

gµλgνκ(∂µa0∂νa1
− ∂νa0∂µa1)(∂λa2∂κa3

− ∂κa3∂λa2)dx =
4
3
λ〈da0

∧ da1, da2
∧ da3

〉

where the inner product between two forms is given by

〈ω1, ω2〉 =

∫
M
ω1 ∧ ?ω2.

Let us show that the left hand side of (3.23) is equal to

ϕ =
4
3
λ

∫
M

a0da1
∧ d(?(da2

∧ da3)) (3.24)

The equality (3.23) then follows from Stokes’ formula since M has no boundary. One has by definition

ϕ(a0, a1, a2, a3) =

∫
−a0

[D, a1
]D−1

[D, a2
]D−1

[D, a3
]D−1,

and to prove (3.24) we can take normal coordinates at x ∈ M and compute the subprincipal symbol of
D−1

[D, a2
]D−1

[D, a3
]D−1. We recall that the symbol of a product of pseudodifferential operators Pj with total

symbols σ j is given by

σ(P1 P2) = σ1σ2 +
1
i
∂σ1

∂ξµ

∂σ2

∂xµ
+ · · · .

In particular with σ(D) = ξµγ
µ, this is coherent with [D, a] =

1
i ∂µaγ µ. The symbol of D−1 is up to operators of

order −3 given by

σ(D−1) = ‖ξ‖−2ξµγ
µ

since we are in normal coordinates. Since there are always four factors of 1
i one can neglect them and just compute

σ =
∂σ1

∂ξµ
∂µσ2σ3 +

∂σ1

∂ξµ
σ2∂µσ3 + σ1

∂σ2

∂ξµ
∂µσ3

where σ j = ∂ka j
‖ξ‖−2ξ`γ

kγ `. To compute the residue one uses∫
S∗

ξ2
µdv =

1
4
,

∫
S∗

ξ4
µdv =

1
8
,

∫
S∗

ξ2
µξ

2
ν dv =

1
24
,

which gives∫
S∗

ξiξ j
∂

∂ξk
(‖ξ‖−2ξ`)dv =

1
12
(2δi jδk` − δikδ j` − δi`δ jk).
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Note the identity∑
µ

Tr(γ aγ µγ aγ µ) = −8

which allows us to check that the coefficient of a term like a0∂1a1∂2∂1a2∂2a3 is 4
3 . One obtains as the integrand in

normal coordinates the expression

4
3

∑
kl

a0∂`a
1(∂`a

2∂2
k a3

+ ∂k∂`a
2∂ka3

− ∂ka2∂k∂`a
3
− ∂2

k a2∂`a
3)dv

which is invariantly written as

4
3

a0da1
∧ d(?(da2

∧ da3))

and gives (3.24). �

We let ρ be given by the following formula (which makes sense in general)

ρ(a0, a1, a2, a3, a4) =

∫
−a0

[D2, a1
][D2, a2

][D, a3
][D, a4

]D−6
−

∫
−a0

[D, a1
][D2, a2

][D2, a3
][D, a4

]D−6

+

∫
−a0

[D, a1
][D, a2

][D2, a3
][D2, a4

]D−6

−

∫
−a0

[D2, a1
][D, a2

][D, a3
][D2, a4

]D−6. (3.25)

By construction ρ is a Hochschild cocycle and B0ρ is already cyclic. We shall now show that assuming a condition
of the form (3.23) one can use a multiple of ρ to eliminate ψ and replace τ0 by a positive Hochschild cocycle.

Positivity in Hochschild cohomology was defined in [4] as the condition∫
τ

ωω∗
≥ 0, ∀ω ∈ Ω2, (3.26)

where the adjoint ω∗ is defined by

(a0da1da2)
∗

= da∗

2 da∗

1a∗

0 , ∀a j ∈ A.

It then follows easily (cf. [3] Chapter VI) that the Yang–Mills action functional fulfills

Y Mτ (A) ≥ 0, ∀A ∈ Ω1.

We let π be the representation of Ω∗ given by

π(a0da1 . . . dan) = a0
[D, a1

] . . . [D, an
]

Lemma 3.11. The following equality defines a positive Hochschild cocycle:

τ+(a
0, a1, a2, a3, a4) = −

∫
−a0([D2, a1

][D, a2
] − [D, a1

][D2, a2
])

× ([D2, a3
][D, a4

] − [D, a3
][D2, a4

])D−6.

Let F be the sign of D, ω j ∈ Ω2 then∫
τ+

ω1ω2 =

∫
−(Fπ(ω1)F − π(ω1))(Fπ(ω2)F − π(ω2))D

−4. (3.27)

Proof. By construction τ+ is a Hochschild cocycle. The right hand side of (3.27) fulfills (3.26) since for two forms
one has π(ω∗) = (π(ω))∗. Thus it is enough to prove (3.27). By bilinearity we can assume that ω1 = a0da1da2 and
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ω2 = da3da4b. Moreover since [F, b] is of the same order as D−1 we can absorb b in a0 i.e. assume b = 1. Let us
show that modulo bounded operators

[D, π(ω1)] = a0([D2, a1
][D, a2

] − [D, a1
][D2, a2

]).

Indeed the left hand side is

[D, a0
][D, a1

][D, a2
] + a0(D[D, a1

] + [D, a1
]D)[D, a2

] − a0
[D, a1

](D[D, a2
] + [D, a2

]D)

= [D, a0
][D, a1

][D, a2
] + a0([D2, a1

][D, a2
] − [D, a1

][D2, a2
]).

Moreover, modulo bounded operators has

[D, π(ω1)] = [F, π(ω1)]|D| + F[|D|, π(ω1)] ∼ [F, π(ω1)]|D|.

This gives∫
τ+

ω1ω2 = −

∫
−[F, π(ω1)]|D|[F, π(ω2)]|D|D−6

= −

∫
−[F, π(ω1)][F, π(ω2)]D−4

and using F2
= 1 yields (3.27). �

Proposition 3.12. Let us assume that with ϕ given by (3.8) one has, for some µ ∈ R,

ϕ = µ

∫
−([D2, a0

][D, a1
] − [D, a0

][D2, a1
])([D2, a2

][D, a3
] − [D, a2

][D2, a3
])D−6. (3.28)

(1) With the notations of Proposition 3.7 one has
• ψ −

µ
2 B0ρ = 0

• τ = τ0 − µρ is equal to 2µτ+
(2) Eq. (3.19) holds after the replacement τ0 → τ , ψ → 0 and τ is positive if µ > 0.

Proof. Let ϕ be given by (3.8) and

ϕλ(a0, a1, a2, a3) = ϕ(a1, a2, a3, a0).

One has

ϕ + ϕλ = −B0τ0. (3.29)

Indeed by (3.11) one has∫
−[D, a0a1

]D−1
[D, a2

]D−1
[D, a3

]D−1
= 0

which gives (3.29). We thus get ψ = ϕ +
1
2 B0τ0 =

1
2 (ϕ − ϕλ) and we can compute the right hand side using (3.28).

One then gets using (3.25), that ϕ − ϕλ = µB0ρ which proves the first assertion.

To prove the second we now compute τ0 − µρ. By Lemma 3.1(2) and (3.29) one gets

τ0 = −
1
2

b(ϕ + ϕλ)

and one can use (3.28) to compute the right hand side. The computation gives

(τ0 − µρ)(a0, a1, a2, a3, a4)

= −2µ
∫
−a0([D2, a1

][D, a2
] − [D, a1

][D2, a2
])([D2, a3

][D, a4
] − [D, a3

][D2, a4
])D−6. � (3.30)

In the Riemannian case one has µ =
1
6 by (3.23), and thus one gets

τ(a0, a1, a2, a3, a4) = −
8
3
λ

∫
M

〈a0da1
∧ da2, da3

∧ da4
〉
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so that since λ =
1

8π2 one gets

1
4

∫
τ

(dA + A2)2 =
1

24π2

∫
M

Tr(FµνFµν)
√

gd4x

which agrees with the direct computation using the Seeley–De Witt coefficients [1,7,8].

4. Open questions

We shall briefly formulate two important questions which are left open in the generality of the above framework.

4.1. Triviality of ψ

It is true under mild hypothesis that the vanishing of the pairing with the K1-group

〈ψ, u〉 = 0, ∀u ∈ K1(A),

implies that the cyclic cocycle ψ is homologous to zero,

ψ ∈ B Z4(A,A∗).

Thus one can in any such case eliminate the Chern–Simons term using Proposition 3.7(2). We have not been able to
find an example where ψ does not belong to the image of B and it could thus be that ψ ∈ B Z4(A,A∗) holds in full
generality.

4.2. Positivity

In a similar manner the freedom given by Proposition 3.7 should be used to replace the Hochschild cocycle τ0 by
a positive Hochschild cocycle τ .
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